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numbers increase in the exponential, the series in (4.1) converqes no more slowly than the 
sum of the terms of an infinitely decreasing geometric proqression, while the solution of the 
integral Eqs.(4.2) can be obtainedbyusing a large set of effective methods including the 
asymptotic methods developed for a similar class of equations (/la, ll/, for instance). 

REFERENCES 

1. RAPPOPORT R.M., Some problems of analysinq thick spherical shells under non-symmetric 
strain, Izv. Vsesoyuz. N.-I. Inst. Gidrotekhniki, 95, 1971. 

2. KOSTAREV A.V., On the orthogonality relationships of homogeneous solutions of two-dimensional 
elasticity theory problems. Thermal Stresses in Structural Elements /in Russian/, 18, 
Naukova Dumka, Kiev, 1978. 

3. SLEPYAN L-I., Betti's theorem and orthogonality relationships for eigenfunctions, Izv. 
Akad. Nauk SSSR, Mekhan. Tverd. Tela, 1, 1979. 

4. ZIL'BERGLEIT A.S. and NULLER B-M., Generalized orthogonality of homogenous solutions in 
dynamic elasticity theory problems, Dokl. Akad. Nauk SSSR, 234, 2, 1979. 

5. ALEKSANDROV V.M., Method of homogeneous solutions in contact problems of elasticity theory 
for bodies of finite size, Izv. Sev.-Kavkaz, Nauch., Tsentra Vyssh. Shk., Ser. Estestv. 
Nauk, 4, 1974. 

6. CHEBAKOV M-I., Some dynamic and static contact problems of elasticity theory for a 
circular finite size cylinder, PMM, 44, 5, 1980. 

7. KITOVER K.A., On the use of special systems of biharmonic functions to solve certain 
elasticity theory problems, PEW, lG, 6, 1952. 

8. ALEKSANDROV V.M. and KOVALENKO E.V., Periodic contact problems for an elastic strip, Izv. 
Akad. Nauk ArmSSR, Mekhanika, 30, 4, 1977. 

9. ALEKSANDROV V.M., Analytic methods of solving elasticity theory problems for bodies of 
finite size with intrinsically mixed boundary conditions. Timely Problems of the Mechanics 
of Deformable Media. Dnepropetrovsk Univ. Press Dnepropetrovsk, 1979. 

10. VOROVICH I.I., ALEKSANDROV V.M. and BABESHKO V.A., Non-classical Mixed Problems of 
Elasticity Theory, Nauka, Moscow, 1974. 

Il. Development of the Theory of Contact Problems in the USSR, Nauka, Moscow, 1976. 

PMM U.S.S.R.,Vol.Sl,No.l,pp.82-88,1987 
Printed in Great Britain 

0021-8928/87 $~O.OO+O.OO 
01988 Pergamon Press plc 

DYNAMIC PROPERTIES OF AN ELASTIC SEMIBOUNDED MEDIUM IN 
THE PRESENCE OF TWO MASSIVE STAMPS* 

Translated by M.D.F. 

E.I. VOROVXEi, O.D. PRY~INA and O.M. TUKODOVA 

The dynamic properties of a system consisting of two massive rigid strip 
stamps and an elasticsemi-infinite medium axe investigated. A layer, a 
cylinder, a multilayer foundation, etc., can be selected as such a medium. 
The method of fictitious absorption is used, which are developed for one 
stamp in /lf. Unlike other approaches to solve there problems /2-4/, 
this method enables one to describe, to any degree of accuracy, the 
behaviour of contact stresses simultaneously at all points of the contact 
domain, both inside and on the boundary. 

The presence of resonance frequencies of four kinds is established in the system. Among 
the first kind is the value of the frequency xp+, starting with which the system has no 
energetic solution and waves propagate therein that have only geometric damping. The 
critical frequency here is independentofthe stamp characteristics and is determined just by 
the geometric and dynamic properties of the waveguide. The second kind of resonances is 
characterized by the frequencies to which multiple roots correspond, i.e., the poles of the 
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integrand K(h) of the kernel of the system of integral equations if the wavelength is 2nih& 
OS. The third kind of resonances is obtained if X(h) has multiple poles for I=0 fZ/. In 
the case of resonances of the third kind both the resonant frequencies and the vibrations 
amplitudes have finite relative maxima and become infinite only for zero mass. There is 
always a denumerable set of resonances of the third kind. It is actually asserted in /4/ that 
the amplitude at these resonances is infinite for any mass not equal to zero. 

Resonances of a fourth kind, the B resonances predicted in /5/, are detected for stamps 
in this paper. The same resonances were found earlier in the problem of one stamp /6/.*(*See 
also: VorovichE.I.,Pryakhina O.D. and Tukodova O.M., Wave excitation by a massive stamp on 
an elastic layer. Dep. NO. 7641-84, VINITI, Moscow, 1984.) The number o"f these resonances 
is always finite, they are located on a segment prior to the first resonance frequency x2*. 
occur for masses greater than a certain critical valuem ., and the vibration amplitude thereon 
is infinite for any mass m>,m,. In particular, two resonant frequencies of the B kind are 
detected for the system examined in this paper. 

I. Let two strip stamps of mass m 1 and mz be in frictionless contact with an elastic 
semibounded medium. Harmonic forces Ple-iot and P,e-‘of are applied to the stamp centre of 
mass, whereupon the stamps perform periodic vibrations consisting of translational displacement 
of the centres of mass and rotations around the centres of gravity. 

The stamp displacements and the wave field excited in the medium and determined from the 
joint solution of the equations of motion of the stamps and the medium /2/. The contact 
condition should be satisfied here: equality of the displacement amplitudes of the stamp sole 
points and the medium surface points in the contact domain (az~C-l<x< a2?, - 00 <y< co, z = 0, 

k = 1, 2). The problem mentioned is reduced to the solution of a system of integral equations 
of the first kind by the method of integral transforms, which system is written in the follow- 
ing form, taking the contact condition into account (in dimensionless amplitude parameters): 

(1.2) 

Here ukc are vertical displacements of the centre of mass with the coordinate xke = (azl; + 

ad& ‘PI ’ are the angles of rotation around the horizontal axis passing through the 
centre of gravity, and gk are the contact stresses characterizing the reaction of the medium 
for the first (k = I), and second (k = 2) stamps, respectively. 

The form of the function K(a) is determined by the kind of medium, where K(a) possesses 
the properties of evenness,is real for a real argument , and allows representationinthe form 
of the ratio of two entire functions with conservation of the behaviour of the form c fa 1-1 
at infinity. The contour s is selected from the energy radiation condition at infinity, 
which ensures uniqueness of the solution of the problem /2/. 

The displacements ukC and the angles of rotation qr of the stamps satisfy the equations 
of motion of a solid (in dimensionless amplitude parameters) 

- x;“mgk, = P, - Qk, nz2 = p&Pip 
- xSzJkcp, = Mh. - Nh., J,, = mp (aBh. - a,&/l2, k = 1,2 

(1.3) 

"zk %k 

Qh.= s qr(x)dx, N, = s Qh. (5) (2 - Ike) dX 
"ak-1 %8-l 

(Lr,) 

where o is the frequency of vibration, p is the density of the medium, p is the Lame parameter, 
h is the characteristic dimension of the medium (the layer thickness, say), Jk are the stamp 
moments of inertia with respect to the horizontal axes passing through the centres of mass, 

and Qk, NE are the amplitudes of the equal-acting forces and moments of the contact stresses. 
The stamp total displacement will be determined from the formula 

% = % + 'pk (2 - lkc), k = 1,2 (1.5) 

2. Let us consider the system of integral equations 

Gcr, + % = fr, r E: (al. a,) p % + @a = fa, z E (a,, a,) (2.1) 

where the integral operator G has the form (1.21, and fi,l are given functions. The method 
of fictitious absorption /l/ is used to solve system (2.1). 

We represent the integrand of the kernel of the operator (1.2) in the form of the product 
of two functions K (a) = S (a)Il (a), where S(a) has a behaviour at infinity that agrees with 
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K (ak while n (a) contains all the singularities of K(a) on the real axis and possesses 
the property n(a)-+1 as la j-co. We can select c(U'+ B2)-~~ or a-"tuba as s(a) where 

6 is an arbitrary parameter with B>l in conformity with the requirements of the method of 
fictitious absorption. 

To construct an approximate solution of the integral equation, we approximate the function 
n(a) by the expression 

II, (a) = fi (d - z$) (a* - p&-1 
kr.ai 

to a given degree of accuracy. According to the theorems established in /2/, this ensures the 
closeness of the solution of the system of integral equations with the kernels X = Sl'I and 
R, = sn,. 

We seek the solution of system (2.1) by the method of fictitious absorption in the form 
of the sum 

Qm (4 = &no (4 + %I fz)* m = *,2 12.2) 

so that the equalities 

are satisfied, where pk are poles of the function R(U) and such that Imps> 0. It is 
convenient to take a system of delta functions with non-intersecting supports at the points 

zrm = a,,-, t-k (asm- aa,,4/(2n f 1) that divide the intervals (a rm_rr u,,) into the equal segments 

as the component qm(x) (cg,,, are constants to be determined). 

We introduce the new unknown functions t=(z) by the relationships 

t,(s)=-&5 T,(a)e-iaxda, m-1,2 

Inserting (2.2) and (2.3) into (2.1) and taking account of (2.4), we arrive at a system 
of equations in the new unknowns Gn (4 

Gt, + Gt, = f’,, 5 E (a,> 4 (2.5) 

Gt, + G&z = F,, XE (481 44) 

The kernel of the integral operator G defined by tl.2) has the form 

k(s)=-& 1 S(a)e-'axda 
G 

We take (a% + Ba)-'f* as S(m). The contour d agrees with the real axis in this case. 
Without loss of generality, we also set jm(s)= A,e-‘~,Imq,== O,q> 0. Therefore, the system 
of integral equations of the dynamic contact problem (2.1) has been reduced to a system of 
equations of the static problem (2.5) with integrand of the kernels(a) that has no singular- 
ities on the real axis. 

The solution of system (2.5) can be constructed by numerous methods for solving static 
problems or problems for media with strong absorption by virtue of the rapid decrease of the 
integrand of the kernel s(U). For example, we obtain by the method of factorization 

The functions &(a, 5;) and tmn(z) have the form 
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(2.7) 

uln((x)=erf 1/(B + iq)(~ - x)4- erf1/(B -_Q(x-a,l_,) 

On the basis of the lemma C/7/, p.168), for the functions q,,,‘(x) to have a support in 
the domain B: CZ~~-~< x\< aem, it is necessary and sufficient that 

rm(zt sti) = 0, k = 1, 2,. . ,, n (2.8) 

bk are the zeros of the function II(a), such that Irn.z%> 0). 
The relationships (2.8) are 4n equalities in 4nunknown functions cfm (k = 1,2,..., 2n, m = 

1,2) bytbetheoryofresiduesthese relationshipscanbereducedtothe followinglinearalgebraic 
system to determine the coefficients ctirn 

I/B - ia exp (ic~a~~_~) F,, (- a, xkI - CZ,,_~)] II 
A,T,,,q(a), m=l,2, a=&~~, i=1,2 ,,.., n 

(s=l for 1= m= 2, in the remaining cases s = 0). 
Here 

F~(a,~~=~uj 
e*iPjE 

‘Pj Ca Zt Pj) 1/Brt’pj ’ 
1=1,2 

j=I 

(1 = 1 corresponds totheplus sign, and d = 2 to the minus sign). 
Having determined C&,, from system (2.91, we find the functions g,,,'(x) and, therefore, 

also Pm(z) by means of (2.4) and (2.2)‘ where 

Ir,'(X)--&- 1 T,(~)FI-*(a)e-~~x~a 

%m 

T,(a)= S utm(i)e'uXdo 
azm-l 

(2.10) 

We obtain the final formulas to compute the contact stresses Q,,,(X) under the stamps. 
We insert expression (2.6) for t,,,(s) into the integral representation of the solution (2.10) 
and we use the approximation n(a). The integrals &,,(m=1,2), defined by (2.7) are taken in 
residues since the integrands decrease exponentially in the lower half-plane of the complex 
variable q and have no branch points there. The remaining integrals in the solution (2.10) 
are calculated by means of the formulas of the operational calculus. 

Omitting the calculations, we present the general form of the approximate solution of 
system (2.1) 

I 
%%(z)- K-x(q)e-iw + ZP(q)e-i%,*(x) + (2.11) 
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The parameter is S -= 1 for [ ::: ,r,, ~~ " and s= 0 in the remaining cases. 
The following notation was used 

A program package has been compiled for the BESM-6 to compute the contact stresses qm(x) 
andthe coefficients ckm occurring in the solution. 

As an illustration, we consider a layer adhering rigidly to a non-deformable foundation. 
The form of the function K(a) is given in /I, 2f and is not presented here. Graphs of the 
real part of the contact stress amplitudes RWI and Regz are represented in Fig.1 for given 
unit displacements of the stamps of identical width (Al=82= 1) far different distances 
between the stamps: 2b =: 2,6,10 (curves 1-3). 

Fig.1 Fig.2 

Fig.2 characterizes the contact pressures Ra 9~ that occur under a stamp at rest for a 
given unit motion oftheother (A,= 0, As = 1) for different values of the stamp width a*-a,= 
6, 10, 20 (lines l-3). Lines 4-6 describe the behaviour of Reql when both stamps vibrate 
translationally with unit amplitude (A,= A,= 1). All the graphs are given for xp= 2,E;q= (1 and 
n, - (la = 6, Analysis shows that the stress oscillation increases with the stamp dimension while 
the amplitude diminishes. 

We note that the real loads referred to @z are quantities of the order of 10+-- f&l*. 
Consequently, when going over to specific parameters the results presented in the graphs and 
obtained for unit displacement decrease by many orders. 

3. Let qlsBj (j = 1,2,3,4) be solutions of the system of integral equations (2.1) for the 
right-hand sides 

respectively. Then by virtue of the linearity oftheproblem, the solution of the system (1.1) 
will be 

~l,=(U~,-~cp,rl,)~h-' -t-(US,-Wac) qkz i- Wts f Wv’r k= 1~2 

where qkj(x) are related to the solution qK(z,q) obtained in Sect.2 as follows 
(3.1) 
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(Ik’ (4 =;: qk (x, 0), A, = 1, A, = 0 forf =I 

and Al= O,A,=i for j=2 

skj(qyi Fv Al-i, &=O, q=O forj=3 

and A, = 0, A, = 1, q = 0 for j =4 
Substituting (3.1) into (1.3) and 11.41, we obtain a system of four equations to determine 

the four unknowns ~r~,rn~,q~ and ve in the form 
(A+-B)u=P (3.2) 
= -I {u*ot uzc, 'PI, cpz), p = fP,v p,. ME* MaI 

alit = - m:9422, att2,b+2 = - Jh. xz2, k = 1, 2 

The remaining elements of the matrix Aequal zero. The elements of the matrix Bhave the 
form 

&= Qs', bka= QkB, bxs= -rrcQkl + Qk', 

bk4- - ~.cQ,r" i- Qk4 

bh.+z,l= - xkeQel -I- Qk', bk+z,a= - %Qtc' + Qr" 

bk+z.s- xic+eeQrl - .%Qk5--5i;eQk3 -b Qr' 
be+,,,= 52~X~cQlr2- xeQr" - xpcQt4 + Qg', k = 1, 2 

%k 
jQkjz 5 qkj(r)dz, @= =f qkj(z)s&, f==i,2,3,4) 

=ak-1 %-I 

The general (total) vertical displacements of points of the base of the stamp will be 
determined from (1.5). 

We note that for frequencies less than the critical wave propagation frequency xI* in 
the above-mentioned media, the functions Qkj are real, while for xo>xz* they become complex. 
The frequency x2* characterizes resonance of the first kind and for a layer xp* = n/2. Con- 
sequently, it is interesting to study the frequencies x,(x,, at which the displacement 
amplitudes uk (k = 1,s) can become infinite, i.e., those relationships of the problem parameters 
for which the determinant of the system (3.2) vanishes. 

At layer frequencies corresponding to double poles of the function K (a)equal to zero and 
located in the domain xl>xz*, the amplitude of the total forces vanishes (which satisfies 
the requirements of the theory by virtue of a well-known theorem 121, p-2391, and the vibration 
amplitudes will be infinite for zero mass of the stamp. These resonances of the third kind 
were studied in ./a/. The vibration amplitude becomes finite if the body mass is different 
from zero, but resonances of another kind (the B kind) can appear for x,(x,, (predicted in 
/5/ and established in /6/ for the case of one stamp andinthis paper for a system of two 
stamps) at which the vibration amplitude becomes infinite. 

We consider the case of a symmetric stamp arrangement and symmetrical loading by unit 
forces on a layer rigidly adherent to a non-deformable base. In this case the system of four 
Eqs.(3.2) reduces to a system of second-order equations with two unknowns U, and cp (m, = m, = 

m, ule = UPC = u,, ‘PI = ‘pz = ‘p, %c = 32e = 4 

u, (- mxaa -j- k,) + ‘pl (k, + xckl) = 1, E = (aa - a,)2/12 

u, (xck, + k2) -I- ‘pl I- xzernc + (x2 k, -!- xc (k, + k,) +- k,l = 1 

Equating the determinant of this system to zero, we arrive at the equation 

rneX,” - Zmx,2f, hf = fa (xi) 

h h) = Iha -I- E) kl + xc (kz + k,) + k,).@) 

fa 6%) = &,k, - k,k,)ie 

(L = QI' + Q?, kz = QI” + Qle, k3 = Q,” - Q14, 

k4 = QC- 91") 

(3.3) 

Eq. (3.3) can have two positive real roots if its discriminant D is positive, one root if 
D = 0 and none when D (0. 

In Fig.3 we show the dependence of the resonance frequencies x1 on the stamp mass m for 
a given stamp width a,- a, = 6. It is seen that two critical masses exist, m,, and m,, such 
that when the stamps possess a mass less than ml, ( which corresponds to D <O), there is no 
resonance in the system. For m,,<m<m~, there is one resonance. And finally, for 
sufficiently large masses rn> mpt the system has two resonance frequencies at which the 
amplitude of the forced steady vibrations becomes infinite. As the mass grows the value of 
the resonance frequencies falls. The behaviour of the resonance curves does not change 
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qualitatively as the stamp dimensions change. 

-7 

m 

JG ---- _-’ 

----_-_ 

Therefore, the system under consideration cannot have more than two 
resonances in the domain x2< %*a Therefore, resonances of the kind B 
exist when det(A + B)= 0 and such resonances are obviously possible 
only for frequencies less than the frequency x2* corresponding to the 
initial point of a continuous spectrum. For semi-infinite bodies these 
resonances characterize the fact that the vibration amplitudes become 
infinite, which compares asemi-infinite body with a body of bounded 
dimensions in its dynamic properties. 

For resonances at X, >~a* the vibration amplitude takes a maximum 
but quite definite finite value. Precisely these resonances (of the 
third kind) were investigated earlier /4/. We note that the determinant 

for x,>x,, generally never vanishes for a non-zero stamp mass although 
this was asserted in /4/. Moreover, resonances of the B kind in a layer 
or strip with stamps only occur for a fairly large stamp mass, starting 
with a certain critical value while resonances of the third kind occur 
for any stamp mass, 

The authors are grateful to 1.1. Vorovich for discussing the research 
and for useful remarks. 
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